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SUPPLEMENTAL DATA: Figures and Tables

Figure 4 (supplemental). Differentially expressed genes were validated by

QPCR

The gene expression of IGFBP1, IGFBP 3, CTGF, AKT, FRAP, MYC, NF-kB,

HK1, SIRT7, PHD1, was validated by QPCR. The gene expression of PHD2 and

PHD3 was quantified as well.

Table 4 (supplemental). The RRR 1,325 genes expression data and specific

functional gene-clusters

1,325 unique genes were identified in the current microarray dataset. The gene

expression is presented as up or down from normal-ischemic kidneys. Two

separate groups of microarray experiments were conducted, and the results were

subsequently normalized to eliminate systematic bias. The first group consisted

of normal and ischemic tissues, as well as and 1 and 2 days post-injury. The

second group consisted of normal kidneys and 5 and 14 days post-injury. The

data from days 1 and 2 were normalized by the mean of the normal-ischemic

group, and the data from days 5 and 14 by the mean of the corresponding

normal kidney. The genes were further clustered according to RCC vs. normal

kidney; renal cell culture hypoxia responsive genes vs. normoxia; HIF regulated

genes; VHL, IGF1, MYC, NF-kB pathway genes; purine pathway genes; gene

expression following renal ischemia reperfusion and/or acute renal failure (ARF)

vs. normal tissue; and gene expression in response to serum (1, 2).

Table 5 (supplemental). An ontology analysis in timely dependent fashion:

distinct and common ontologies
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A. The differentially expressed genes were clustered according to their pattern of

expression as early, late or continually RRR. Functional ontology analysis was

performed (p<0.05). The presented ontologies are the ontology core and are

hyperlinked to EMBL-EBI. The average RRR expression (log2) of each ontology

is presented in a green to red scale; green down-regulated, red up-regulated.

The numbers and average RRR expression of up- and down- regulated genes,

the category p-value and enrichment are shown as well.

B. The genes in the three phases of renal regeneration and the concordant and

discordant genes are analyzed for GO (summary sheets). These genes were

crossed with the data from supplemental Table 4 (cross sheets); green down-

regulated and red up-regulated in RRR.

Table 6 (supplemental). The differently expressed genes in both RRR and

RCC exhibited distinct ontologies for the concordance vs. discordance

genes

The differentially expressed genes in both RRR and RCC were clustered

according to their concordance vs. discordant change. Functional ontology was

analysis performed (p<0.05). The ontologies are hyperlinked to EMBL-EBI. The

average RRR expression of each ontology is presented in a green to red scale;

green down-regulated, red up-regulated. The number and average RRR

expression of genes up- / down- regulated in both RRR and RCC, the category

p-value and enrichment are also given (the expression direction and values are

as in RRR, relative to the normal kidney).

Table 7 (supplemental). The significance of gene in the various expression

groups: patterns, trends and pathways
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The significance of gene in the various expression patterns of early, late,

continues, pathways and the concordant or discordant groups was analyzed by

using the chi square test. See methods for further explanation.

Table 8 (supplemental). The RRR genes in non-probabilistic GO ontologies

The comprehensive probabilistic analysis may fail to capture many key aspects

of the concordant and discordant gene functions. Therefore, we also categorized

the genes into gene-by-gene, non-probabilistic GO.

Table 9 (supplemental). An ontology analysis of the concordant and

discordant genes in pathway dependent fashion: distinct and common

ontologies

The concordantly and discordantly differentially expressed genes were clustered

according to their regulation by the pathways of VHL, hypoxia, HIF, IGF1, MYC,

p53 and NF-kB. Functional ontology was analysis performed (p<0.05).

SUPPLEMENTAL DATA: Text

Supplemental discussion on discordant genes- biological processes that

differentiate RRR from RCC

Fatty acid metabolism

Fatty acid metabolism plays a major role in cancer. Our study found that

two fatty acid metabolic enzymes, Acyl-Coenzyme A oxidase 1 (ACOX1/1.3.3.6)
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and Carnitine PalmitoylTransferase 1A (liver) (CPT1A/ 2.3.1.21) are up-regulated

in RCC, but down-regulated during the late pattern or continually during RRR.

The over-expression of both enzymes may increase the levels of intracellular

H2O2 which may drive the carcinogenic process or influence signal transduction

pathways (3).

The organic cation transporter, solute carrier family 22 (SLC22A1), is

critical for the elimination of many endogenous small organic cations, as well as

a wide range of drugs and environmental toxins, in kidney and other tissues.

SLC22A1 is up-regulated in RCC, but down-regulated in RRR (supplemental

Table 4). It may play a role in eliminating toxins from carcinoma cells due to

increased metabolism (4).

mRNA maturation, transcription and post-translational

poly(A) polymerase (PAPOLA/PAP) is down-regulated throughout RRR

and up-regulated during RCC (supplemental Table 4). This gene is of particular

interest because increased PAPOLA activity is associated with rapidly

proliferating cells. It is a strong anti-apoptotic protein and important  marker for

poor prognosis in leukemia and breast cancer patients (5, 6). The guanine-rich

sequence factor 1 (GRSF1) is down-regulated late during RRR and up-regulated

during RCC, possibly by hypoxia (7). GRSF1 binds cellular and viral mRNAs via

a guanine-rich sequence motif in the 5' UTR, thereby recruiting these mRNAs to

polyribosomes (8). GRSF1 could possibly regulate the expression of guanine-rich

transcripts, as described for the EVI1 proto-oncogene (9, 10).

 The nuclear orphan receptor-binding retinoic acid response 6

(NR2F6/EAR2) is up-regulated late during RRR and down-regulated during RCC

(supplemental Table 4), (11). NR2F6 is a negative modulator of renin

transcription, possibly explaining high levels of renin and prorenin associated

with RCC (12). The nuclear receptor coactivator4 (NCOA4/ ARA70) is down-

regulated late during RRR and up-regulated in RCC (supplemental Table 4);
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(13). NCOA4 is a ligand-dependent androgen receptor (AR)-associated protein

that enhances AR transcriptional activity 10-fold in prostate cancer cells in the

presence of dihydrotestosterone or testosterone, but not hydroxyflutamide.

NCOA4 is AR-specific and does not stimulate the estrogen receptor in human

prostate cancer cells (14). Collectively, these data suggest that transcriptional

and post-translational control may be deregulated tumor cells.

DNA repair

Several DNA repair and/or stress response genes are discordant in RRR

and RCC. These genes include SMC1L1, TOP3B and FRAP1 and possibly

SIRT7. SMC1L1 (structural maintenance of chromosomes 1-like 1) is up-

regulated early during RRR and down-regulated during RCC (Table 3 and

supplemental Table 4). SMC1L1 is essential for sister chromatid cohesion in

yeast cells undergoing mitosis and may play a role in DNA repair (15). TOP3B

(topoisomerase III beta) is down-regulated early during RRR and up-regulated

during RCC (Table 3 and supplemental Table 4). TOP3B interacts with DNA

helicase SGS1 and plays a role in DNA recombination, cellular aging, and the

maintenance of genome stability (16).

Heparin binding

Five discordant genes (CTGF, THBS1, VEGF, APOE and LPL) are

interacting selectively with heparin. The first 3 genes are involved in

angiogenesis (Tables 2 and supplemental Table 5b). Heparin-binding angiogenic

proteins are stored as a complex with heparan sulfate in the microenvironment of

tumors. These proteins are released and can induce new capillary growth when

heparan sulfate is degraded by heparanase (17).

Autosomal dominant polycystic kidney disease (ADPKD) and RCC

Patients suffering from chronic renal failure tend to develop cystic kidney

disease which can progress to RCC (18). Polycystic kidney disease 1 (PKD1) is

down-regulated early during RRR and up-regulated during RCC (supplemental
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Table 4); (7). PKD1 encodes a glycoprotein that may function as an integral

membrane protein involved in cell-cell/matrix interactions, and may modulate

intracellular calcium homoeostasis and other signal-transduction pathways.

PKD1 plays a role in renal tubular development, and mutations in PKD1 account

for 85% of autosomal dominant polycystic kidney disease (ADPKD), (19, 20). It is

possible that up-regulation of PKD1 in RCC is consequence of the pathologic

tumor hypoxia (7). Alternatively, PKD1 may play some unknown function in RCC.

The HIF-VHL pathway (continued)

UBE2V1/CIR1, a variant E2 ubiquitin-conjugating enzyme, is down-

regulated during RRR and up-regulated in immortalized renal cells and in human

tumor cell lines (21). Further studies would be needed to define the relationship

between UBE2V1/CIR1 and HIF1a or the E2 ubiquitin-conjugating enzymes

CUL2, CUL5, CUL1 and CDC34. Another discordantly expressed protein ligase

is zinc finger protein 144 (ZNF144/PCGF2/MEL18). ZNF144 is up-regulated in

late RRR and discordantly down-regulated in RCC (supplemental Tables 4 and

8); (13). The protein encoded by ZNF144 contains a RING finger motif and is

similar to the polycomb group (PcG) gene products. The human PcG protein,

Pc2, is a SUMO E3 (small ubiquitin-related modifier E3); (22). ZNF144 is

proposed as a negative regulator of self-renewal of the hematopoietic stem cells

and promoter of their differentiation. It also appears to be a tumor suppressor

(23). Further studies focused on the role of those ligases in RCC and the HIF

pathway are warranted (24-26).

The IGF1 pathway (continued)

IGFBP8/CTGF, a member of the CCN family, is also differentially up-

regulated late during RRR and down-regulated in RCC. CTGF binds IGF1, albeit

with relatively low affinity compared with classical IGFBPs. CTGF and IGF1

cooperate in up-regulating type I and III collagens in human renal fibroblasts. The

synergy between CTGF and IGF1 might be involved in glucose-induced matrix

accumulation, because both factors are induced by hyperglycemia (27). CTGF is
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a major factor in fibrotic disease, is down stream of TGFa and may inhibit

metastasis and invasion (28-30).

Methodological considerations related to data integration, quality control,

data cataloging and data validation

Implementation of comparative biology in the current study

RRR in human though common (eg., kidney transplantation); (31) is not

amenable for obtaining samples at different times during RRR. In recent years,

mouse (and other) model systems have shed new light on the nature and

treatment of human RRR. Included have been physiological, pharmacological,

global gene expression and gene inactivation studies (32, 33) Therefore, the

changes in RRR gene expression were measured in mouse model. To the best

of our knowledge there is no mouse model for sporadic RCC. Therefore, to

compare RRR and RCC we performed a careful comparative biology analysis of

differential gene expression in RRR and RCC. This required integrated data from

different organisms, tissue pathologies, methods and authors (34). The

interspecies comparison of gene expression of mouse RRR with human RCC

was feasible by using the normal tissue in each original publication as a

reference point and thus the comparison was indirect (i.e. not RRR vs. RCC).

The significance of the differentially expressed genes was as offered by the

authors. The feasibility of the comparison was supported by the findings that both

the RCC and the RRR process are predominantly found in the proximal tubules

which make the bulk of the kidney tissue (Figures 1), (35-39).

There are two basic approaches to address the complexity of cancer. One

is to reduce complexity through analysis of experimental models (cell lines or

animal models) to characterize fundamental processes or function of single

genes. Another is to integrate large data sets, to yield a model for tumor

development and behavior (34). Each approach has its own advantages and

disadvantages (40-42). The second approach, involving integration of large data
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sets, is challenging in part because only a limited number of samples, such as

tumors, preneoplastic tissues or wound healing samples, can be analyzed in a

given study. This makes data interpretation and model development difficult,

given the large amount of heterogeneity between human tumors (34). Thus the

analytical approach we took was to correlate mouse experimental RRR model

data with the very extensive data reported on RCC. Comparisons across

biological systems are commonly done for example using tissue culture serum

response to predict cancer survival (1, 2). Further, the power of this comparative

-analysis approach is also exemplified by a comparison of the RRR literature with

the current experimental RRR dataset. Of the 91 genes appeared on both lists,

89% were differentially expressed in full agreement (up or down), despite the

difference in organisms (human, rat, mouse) and methods (supplemental Table

4). Therefore, qualitative comparative-analysis and data integration is plausible if

the normal tissue is used as a reference point.

To reduce the noise in the datasets, the differential RCC gene expression

was catalogued only qualitatively (not quantitatively), as expressed up or down

from normal tissue (supplemental table 4). The comparison to RRR gene

expression was qualitative comparison as well. The comparison resulted in three

subsets, (1) genes that were differentially expressed in RRR as in RCC; (2)

genes that were discordantly expressed in RRR versus RCC; (3) genes with

conflicting data as per to their expression in RCC. The last group was not

analyzed further. All these subsets include noise, which is a result of differences

in tissue pathologies, methods and authors and is assumed to be distributed

homogenously in both sets of the concordant and discordant genes.

This approach was justified by having large data samples and simply

assuming that the distribution we have sampled is approximately normal. This

enabled us to take into consideration and integrate the extensive heterogeneous

plethora of information on RCC, gathered through methods as microarray,

northern and qPCR.
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Validation of the microarray dataset

A global knowledge step toward constructing a RRR systems biology

network model is to build a comprehensive RRR expression database. Therefore

we reviewed the evidence reported in the literature on differentially expressed

genes in RRR and the relevant pathways and cross-compared them with the

current study (supplemental Table 4). Of the 1,325 RRR differentially expressed

genes in the current study, the expression of 91 genes was previously compared

with normal kidney. The qualitative expression of 89% of the 91 genes was in full

agreement and only 11% was in qualitative conflict that included the genes: NID,

NRP1, ZFP36L1, TNC, MAPK1, HSPD1, HK1, NEDD4, CASP1 and UK114.

These results were despite the difference in organisms (human, mouse) and

methods (supplemental Table 4). We further tested the validity of the data by RT-

QPCR of IGFBP1, IGFBP 3, CTGF, AKT, FRAP, MYC, NF-kB, HK1, SIRT7 and

PHD2 (EGLN1). The expression of PHD2 was down-regulated in early and late

regenerating kidney in comparison to resting/normal kidney. Similar expression

patterns were repeated with two other related prolyl hydroxylases, PHD1 and

PHD3 that were down-regulated as well (supplemental Figure 4). Lastly, The

MiB-1 high expression at 2 days was in full agreement with the array results

(supplemental Table 4).
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